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1. Introduction

Lattice QCD with Wilson quarks [1] has seen important algorithmic developments in the

last few years [2]–[8]. As a consequence, a large range of lattice spacings, lattice volumes

and quark masses can now be explored, using numerical simulations, thus providing new

physics opportunities and a greater lever arm for the extrapolations to the continuum

and the chiral limit. Our recent work [9] was the first to fully profit from the technical

breakthrough and several other projects, simulating QCD with two [10, 11] and three [12]–

[14] flavours of light Wilson quarks, or with two flavours and a twisted mass term [15], are

currently underway, all heavily depending on the new generation of algorithms.

The present paper is the second in a series of two papers devoted to the study of

two-flavour QCD at small quark masses and lattice spacings. In the first paper [9], the

focus was on the physics results, while here we give a fairly detailed technical account of

the simulations that we have performed.

Perhaps the most important items that we discuss are the stability of the simulations

(section 3) and the pattern of autocorrelation times observed in our runs (section 4). We

also describe, in section 5, the methods that we used to extract the meson masses and

decay constants from the generated ensembles of gauge fields (extensive data tables are

included in appendix C). The paper ends with an addendum to the first paper, where we

briefly discuss the quark-mass dependence of various quantities in partially quenched QCD

with 2 + 1 flavours of quarks.

2. Simulation parameters

We consider the Wilson formulation of lattice QCD, optionally O(a)-improved, with a dou-

blet of mass-degenerate sea quarks. The notation and normalization conventions adopted

in this paper coincide with those already used in our previous paper [9]. In particular, the

parameters of the lattice theory are the inverse bare coupling β, the sea-quark hopping pa-

rameter κsea and the coefficient csw of the Sheikoleslami-Wohlert improvement term [16, 17].

All simulations reported here were performed using the DD-HMC simulation algo-

rithm [7]. As suggested by the name, the algorithm combines domain-decomposition ideas

with the HMC algorithm [18]. More precisely, by dividing the lattice into non-overlapping

rectangular blocks, a natural separation of the high-frequency from the low-frequency

modes of the fields is achieved. Following Sexton and Weingarten [19], the different modes

are then evolved using different molecular-dynamics step sizes, which results in a significant

acceleration of the simulation.

On a given lattice and at fixed coupling, the simulations progressed from the larger

to the smaller quark masses, normally skipping 1500 molecular-dynamics trajectories for

thermalization. The number Ntrj of trajectories generated after thermalization, the sepa-

ration Nsep (in numbers of trajectories) between successive saved field configurations and

the number Ncfg of saved fields are given in table 1. Different runs at the same lattice

parameters (such as A3a and A3b) are distinguished by a lower-case latin index. In our

previous paper [9], only the runs A1a, A2, A3a, A3b, B1–B4 and D1–D5 were included in
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Run Lattice β csw κsea Ntrj Nsep Ncfg

A1a 32 × 243 5.6 0 0.15750 6300 100 64

A1b 0.15750 5070 30 169

A2 0.15800 10800 100 109

A3a 0.15825 6100 100 62

A3b 0.15825 3800 100 38

A4 0.15835 4950 50 100

B1 64 × 323 5.8 0 0.15410 5050 50 100

B2 0.15440 5200 50 101

B3 0.15455 5150 50 104

B4 0.15462 5050 50 102

C1 64 × 243 5.6 0 0.15800 3450 30 116

D1 48 × 243 5.3 1.90952 0.13550 5150 50 104

D2 0.13590 5130 30 171

D3 0.13610 5040 30 168

D4 0.13620 5010 30 168

D5 0.13625 5040 30 169

E1 64 × 323 5.3 1.90952 0.13550 5344 32 168

E2 0.13590 5024 32 158

E3 0.13605 5024 32 158

Table 1: Lattice parameters and simulation statistics

the physics analysis. The other runs listed in table 1 merely serve, in sections 3 and 4, to

clarify some technical issues.

The DD-HMC simulation algorithm was implemented following the lines of ref. [7].

In particular, for the solution of the Dirac equation on the full lattice, the Schwarz-

preconditioned GCR solver described in ref. [6] was used. The so-called replay trick, how-

ever, was switched off in the more recent simulations A3b–E3, because trajectory replays

would have been rare and hardly worth the extra effort (see subsection 3.3).

No attempt was made to tune the DD-HMC algorithm and most of its parameters

were actually set to some fixed values, the same as the ones already chosen in ref. [7].

Among these were the trajectory length τ = 0.5, the integration step numbers N0 = 4 and

N1 = 5 associated to the gauge and block fermion forces as well as the admitted tolerances

(r1, r2, r̃1, r̃2) = (10−8, 10−7, 10−11, 10−10) for the numerical solution of the Dirac equation

on the blocks and the full lattice.1 The parameters of the Schwarz-preconditioned GCR

solver were fixed to the values quoted in ref. [6], except for the number nkv of Krylov

vectors generated before the GCR recursion is restarted, which was set to 32 in run D5

and to 24 in all other runs.

What remains to be specified are then the size of the blocks on which the algorithm

operates and the integration step number N2 associated to the block interaction term in

the molecular-dynamics Hamiltonian (see table 2). In practice the latter must be increased

as one moves to lighter quark masses in order to preserve a high acceptance rate Pacc. The

1The trajectory length τ and thus the integration step sizes τ/N2, etc., refer to a particular normalization

of the kinetic term in the molecular-dynamics Hamiltonian. Here the normalizations are the same as in

ref. [7], i.e. the term is assumed to be equal to 1
2
(Π, Π) =

P

x,µ
tr{Π(x, µ)†Π(x,µ)}, where Π(x,µ) denotes

the canonical momentum of the link variable U(x, µ).
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Run Block size N2 Pacc 〈NGCR〉 〈NCG〉

A1a 8 × 62 × 12 5 0.81∗ 23 73

A1b 8 × 6 × 122 5 0.82 22 89

A2 8 × 62 × 12 6 0.79∗ 39 74

A3a 10 0.89∗ 54 75

A3b 10 0.86 54 75

A4 16 0.91 73 75

B1 83 × 16 8 0.84 32 85

B2 10 0.89 52 87

B3 12 0.87 74 87

B4 14 0.92 90 88

C1 8 × 6 × 122 7 0.81 41 92

D1 62 × 122 7 0.81 25 120

D2 8 0.80 41 123

D3 12 0.87 58 124

D4 14 0.87 73 125

D5 18 0.89 87 125

E1 84 9 0.80 25 121

E2 11 0.84 41 124

E3 13 0.83 53 125

Table 2: DD-HMC parameters, acceptance rate and average solver iteration numbers. The values

of the acceptance rate are marked with a * where the transition probability includes trajectory

replays.

average number NGCR of GCR solver iterations needed along the trajectories also depends

on N2 (it decreases when N2 goes up), while the average number NCG of conjugate-gradient

iterations required for the computation of the block terms in the molecular-dynamics equa-

tions is largely determined by the block size.

With the chosen parameters, the reversibility of the molecular-dynamics trajectories

is guaranteed to high precision. In the tests that we have performed, the average absolute

deviation of the components of the link variables after a return trajectory was at most

3 × 10−9, while in the case of the Hamiltonian the observed differences were less than

4×10−6. Deviations larger than 10 times the average occurred in less than 1% of the cases

and never went beyond 100 times the average.

3. Spectral gap and stability issues

The Wilson-Dirac operator preserves chiral symmetry only up to lattice effects and is there-

fore not rigorously protected from having eigenvalues much smaller than the quark mass.

Exceptionally small eigenvalues do not invalidate the theory but may lead to instabilities in

numerical simulations, depending, to some extent, on which simulation algorithm is used.

3.1 Spectral gap of the Dirac operator

In a previous dedicated study [20], we computed the distribution of the spectral gap of

the hermitian lattice Dirac operator on the lattices A1 − A4, B1, B2, C1 and D1. The

distributions turned out to be well separated from the origin, thus showing, a posteriori,
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Figure 1: Normalized histograms of the (unrenormalized) spectral gap µ of the hermitian lattice

Dirac operator, as obtained in the runs D2 − D5. The bin size is 2MeV and the dotted vertical

lines indicate the position of the median µ̄ of the distributions. The data were converted to physical

units using a = 0.0784 fm [9].

that the simulations were safe of exceptionally small eigenvalues and the associated insta-

bilities. Moreover, based on the observed scaling properties of the distributions on the A,

B and C lattices, we argued that this will always be so in the large-volume regime of the

unimproved Wilson theory.

The gap distributions have now also been computed on the lattices B3, B4, D2 − D5,

E2 and E3. In the following, however, we focus on the improved theory, because the results

obtained on the B lattices are fully in line with the behaviour expected from our previous

paper [20].

At first sight, the gap distributions in the improved theory look similar to those in the

unimproved theory (see figure 1). In particular, they are well separated from the origin,

on all lattices that we have simulated, and the median of the distributions again turns out
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Figure 2: Median µ̄ of the gap distributions obtained in runs D1 −D5 (data points), plotted as a

function of the bare sea-quark mass msea (see subsection 5.2 for the precise definition of the latter).

The line is a linear fit of the data without constant term.

to be a practically linear function of the sea-quark mass (figure 2).

However, the dependence of the width σ of the distributions on the quark mass and the

lattice size is different (see table 3)2. In the case of the D-series of lattices, for example, the

width decreases by as much as a factor of 1.5 from the largest to the smallest quark mass,

while no obvious mass-dependence was seen on the A and B lattices. Moreover, σ does not

appear to scale proportionally to the inverse square root of the (four-dimensional) volume

V of the lattice (see figure 3). The widths on the lattices D2 and E2, for example, turned

out to be nearly the same, contrary to what was expected on the basis of the experience

made in the unimproved theory.

Another perhaps not unrelated observation is that the median of the distribution on

the D and E lattices is always smaller than the threshold of the spectral density in infinite

volume, which we expect to be at ZAmsea [20], ZA being the axial-current renormalization

constant (ZA = 0.75(1) on these lattices [21]). The spectral density in finite volume thus

has a tail that extends a few MeV below the threshold. On the other hand, the values

quoted in table 3 of the average splitting 〈∆〉 of the lowest four eigenvalues suggest that

the tail scales to zero in the infinite-volume limit, as it has to be if the density in infinite

volume does not extend all the way to zero [20].

At present, however, there is still no theoretical understanding of the dependence

of the gap distribution on the quark mass and the lattice size. In particular, the fact

that the improved and the unimproved theory behave differently in this respect remains

unexplained. Partially quenched (Wilson) chiral perturbation theory may be a framework

in which these questions can be addressed [22] and further insight may perhaps also be

gained by studying the localization properties of the eigenfunctions and the convergence

of the spectral density to the infinite-volume limit. It would be interesting to know, for

example, whether the spectral gap coincides with the mobility edge [23] and whether the

2Following ref. [20], we define the width of the distributions through σ = 1
2
(v − u), where [u, v] is the

smallest range in µ which contains more than 68.3% of the data.
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Run µ̄ σ µ̄ − ZAmsea 〈∆〉
D1 57.3(6) 3.3(4) −6.5(10) 2.48(12)

D2 32.0(3) 2.79(24) −4.8(6) 2.39(7)

D3 21.4(3) 2.84(23) −2.3(4) 2.29(7)

D4 15.9(3) 2.33(18) −2.1(3) 2.23(6)

D5 12.9(4) 1.99(15) −1.4(4) 2.28(5)

E2 30.3(3) 2.58(19) −6.6(6) 1.69(8)

E3 21.3(3) 2.31(19) −5.8(5) 1.52(7)

Table 3: Median and width of the gap distributions in the improved theory. All entries are given

in MeV.

tail of the spectral density below ZAmsea does in fact disappear in the infinite-volume limit.

3.2 Accessible range of pion masses on the D and E lattices

When the sea-quark mass decreases, the gap distribution becomes sharper and moves

closer to the origin. Eventually the probability for exceptionally small eigenvalues is not

completely negligible anymore and one may run into algorithmic instabilities. We have not

reached this point yet and consequently cannot say in which way the DD-HMC simulations

will be affected. However, in order to be on the safe side, one may prefer to stay in the

range of parameters where the gap distribution is well separated from the origin, i.e. where,

say, the inequality µ̄ ≥ 3σ holds [20].

On a given lattice, this bound sets a lower limit on the accessible sea-quark masses

and thus on the masses Mπ of the pions (the lightest pseudo-scalar mesons made of the sea

quarks). Furthermore, if large finite-volume effects are to be avoided, the bound MπL ≥ 3

(where L denotes the spatial lattice size) should better be respected as well.

In the case of the D and E lattices, the range of pion masses where both conditions

are fulfilled can be determined explicitly, using our simulation results. An extrapolation in

the sea-quark mass is however still required, but it seems reasonable to extrapolate µ̄ and

M2
π linearly [9] and to assume that σ drops to values below 2 MeV at small quark masses.

For the accessible range of pion masses, we then obtain

Mπ ≥
{

314 MeV (D lattices),

270 MeV (E lattices),
(3.1)

where the limit is set by the constraint MπL ≥ 3 on the D lattices. This is not so on the

E lattices, but values of MπL as low as 3.4 can still be safely reached, i.e. also in this case,

the stability bound is not too restrictive.

3.3 Molecular-dynamics instabilities

Similar to the standard HMC algorithm, the DD-HMC algorithm obtains the next field

configuration by integrating the associated molecular-dynamics equations. The numerical

integration of these equations is well known to be potentially unstable. If an instability
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Figure 3: Width σ of the gap distributions, scaled by the factor
√

V /a, as obtained in the unim-

proved (left) and the improved theory (right). The statistical errors were determined using the

bootstrap method.

occurs, the energy deficit ∆H at the end of the integration can be large and the new

field configuration is then normally rejected. The efficiency of the simulation may thus be

affected, but we wish to emphasize that large energy deficits do not invalidate the algorithm

unless the reversibility of the molecular-dynamics integration is compromised.

Earlier studies of the phenomenon suggest that the instabilities are caused by excep-

tionally small eigenvalues of the lattice Dirac operator [24]–[26]. Even if the gap distribution

is safely separated from zero, it is possible that the Dirac operator develops such eigenvalues

somewhere along the molecular-dynamics trajectories. The probability for this depends on

how accurately the molecular-dynamics equations are solved, i.e. on the integration step

sizes and the solver residues.

In our simulations, the probability for |∆H| to be larger than 2 was always fairly small

and often equal to zero (runs B1 − B4, for example). The worst cases in the unimproved

and the improved theory were the runs A4 and D5 respectively, where the threshold of 2

was passed by 1.4% and 0.7% of the trajectories. Energy deficits |∆H| larger than 103

were never seen, but values above 100 did occur, although very rarely so.

4. Autocorrelation times

The dynamical properties of the simulation algorithms used in lattice QCD are still largely

unknown. It is not clear, for example, whether there are several relevant time scales

and how they depend on the lattice parameters and the chosen algorithm. We shall not

attempt to answer these difficult questions here, however, and merely give an account of

our empirical studies of the autocorrelations in the runs listed in table 1.

4.1 Determination of autocorrelation times

Following the standard conventions, we define the integrated autocorrelation time τint of
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Figure 4: Normalized autocorrelation functions Γ(t)/Γ(0), plotted versus the time lag t given in

numbers of trajectories, of the plaquette P (upper plot) and the solver iteration number NGCR

(lower plot). The data shown were calculated using the last 4000 trajectories of run B2 (full points)

or only the first 2000 of these (open points).

an infinite series a1, a2, a3, . . . of measured values of an observable A through

τint =
1

2
+

∞∑

t=1

Γ(t)

Γ(0)
, (4.1)

where Γ(t) denotes the autocorrelation function of the series. In practice only a finite

number N of measurements can be made and the estimation of the autocorrelation time

from the available data then requires some ad hoc choices to be made.

For the autocorrelation function we use the approximation

Γ(t) ' 1

N − t

N−t∑

i=1

(ai − ā−)(ai+t − ā+), 0 ≤ t < N, (4.2)

in which ā− and ā+ are, respectively, the averages of the first N − t and the last N − t

elements of the series a1, . . . , aN . The sum in eq. (4.1) is then truncated at some value

W ¿ N of the time lag t, referred to as the summation window, which should ideally be

such that the remainder of the sum can be safely neglected.

If the autocorrelation function is well behaved, as in the case shown in the upper

plot of figure 4, the choice of the summation window is not critical and any reasonable

prescription will do. The rule adopted here is to stop the summation in eq. (4.1) at the

first value of t where the normalized autocorrelation function is equal to zero within two

times its statistical error, the latter being estimated using the Madras-Sokal approximation

(see appendix E of ref. [7]).
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Run τint[P ] τint[NGCR] Run τint[P ] τint[NGCR]

A1a 25(5) 43∗ C1 17(3) 35(7)

A1b 29(6) 38∗ D1 11(1) 10(2)

A2 23(4) 46∗ D2 17(3) 21(4)

A3a 14(2) 53(10) D3 16(2) 19(3)

A3b 28∗ 53∗ D4 16(2) 15(2)

A4 19(4) 45∗ D5 32(6) 24(5)

B1 14(2) 50∗ E1 33∗ 14(3)

B2 12(2) 39∗ E2 19(3) 11(2)

B3 9(1) 45∗ E3 27(5) 25(5)

B4 14(2) 51∗

Table 4: Autocorrelation times of the plaquette P and the solver iteration number NGCR. Esti-

mates based on data binning are marked with a *.

In practice the calculated autocorrelation functions may have long tails and they may

also vary significantly with the selected range of the data series. An example illustrating this

behaviour is shown in the lower plot in figure 4. In all these cases, we divide the data series

into large bins, calculate the bin averages and estimate the statistical variance σ2 of the

total average assuming these are statistically independent. The integrated autocorrelation

time is then given by

τint =
σ2

2σ2
0

, (4.3)

where σ0 denotes the naive statistical error. Evidently, the results obtained in this way are

rough estimates that could easily be wrong by factor 2 or so.

4.2 Reference autocorrelation times

The integrated autocorrelation times of the Wilson plaquette P and the GCR solver itera-

tion number NGCR are listed in table 4. These two quantities are unphysical, but they are

readily accessible and are useful reference cases that probe the dynamics of the simulation

at both short and long distances.

In order to facilitate the comparison of the figures quoted in the table, the autocorre-

lation times were determined using data series of a fixed length equal to 4000 trajectories.

The autocorrelation times are given in numbers of trajectories and error estimates are

quoted only in those cases where the autocorrelation function was well behaved. In these

regular situations, the binning method always gave consistent results.

In all simulations of the improved theory, except for run E1 perhaps, the autocor-

relation times were safely determined and turned out to be reasonably small. This was

not so in the simulations of the unimproved theory, where the autocorrelation function

of the GCR iteration number typically had a tail similar to the one shown in the lower

plot in figure 4. O(a) improvement thus appears to have the side-effect of reducing the

autocorrelation times.
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The regularity of run C1 then remains unexplained, however, and the differences in the

autocorrelation times could actually also very well be related to the fact that the physical

volumes of the C1 − E3 lattices are larger, by a factor of two or more, than the volumes

of the other lattices. Presumably the size of the blocks, on which the DD-HMC algorithm

operates, matters as well, although the comparison of the runs A1a and A1b does not suggest

this to be so.

4.3 Autocorrelations of physical quantities

The meson masses and all other physical quantities were calculated after finishing the

simulations, using the generated ensembles of saved gauge-field configurations (see table 1).

A fairly large number of trajectories was skipped between successive saved configurations

so that the statistical correlations in these sets of fields can be expected to be small.

In order to find out whether the residual correlations are relevant for the determina-

tion of the statistical errors, the basic two-point correlation functions were averaged over

small bins of successive configurations. The physical quantities were then extracted from

the binned data and their statistical errors were estimated using the jackknife method (ap-

pendix A). If there were significant statistical correlations in the data, the errors would

increase with the bin size, but this was not the case and we therefore concluded that it was

safe to proceed without data binning.

5. Computation of meson masses and decay constants

The masses and matrix elements tabulated in appendix C were calculated using a combi-

nation of methods, most of which being entirely standard by now. We consider two valence

quarks, labelled r and s, and study the vector and pseudo-scalar mesons in the r̄s-channel.

The masses of the valence quarks may be set to the sea-quark mass, but we are also inter-

ested in the partially quenched situation where one of the quark masses is different from

the sea-quark mass.

5.1 Two-point correlation functions

The pseudo-scalar density, the axial current and the vector current in the r̄s-channel are

given by

P rs = r̄γ5s, Ars
µ = r̄γµγ5s, V rs

µ = r̄γµs. (5.1)

All masses and decay constants we are interested in were extracted from the two-point

functions

fPP(x0) = a3
∑

x1,x2,x3

〈P rs(x)P sr(0)〉 , (5.2)

fAP(x0) = a3
∑

x1,x2,x3

〈Ars
0 (x)P sr(0)〉 , (5.3)

fVV(x0) = a3
∑

x1,x2,x3

3∑

k=1

〈W rs
k (x)W sr

k (0)〉 , (5.4)

– 11 –
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where W rs
µ is a linear combination of the vector current V rs

µ and a Jacobi smeared form of

it [27], slightly tuned so as to suppress the high-energy intermediate states in the two-point

function.

The correlation functions were evaluated in the standard manner by first expressing

them as an expectation value of a product of two quark propagators. These were calculated

by solving the lattice Dirac equation, using the Schwarz-preconditioned GCR solver [6] and

requiring the normalized residue of the solution to be less than 10−10. In order to reduce

the statistical fluctuations, the results were averaged over time-reflections and 5 distant

source points in the case of the A and B runs and over 3 source points in the case of the

D runs.

5.2 Masses and matrix elements

On a lattice of infinite time-like extent, and at large times x0, the correlation function

fPP(x0) is saturated by the one-particle pseudo-scalar meson state in the r̄s-channel. If we

denote the mass of the meson by MPS and the associated vacuum-to-meson matrix element

by GPS, the asymptotic form of the correlation function is

fPP(x0) = −G2
PS

MPS
e−MPSx0 + . . . , (5.5)

where the ellipsis stands for a series of more rapidly decaying terms. The mass MV of the

r̄s vector meson may be defined similarly through the asymptotic behaviour of the vector

correlation function fVV(x0), but the definition requires further explanation if the meson

is unstable in infinite volume (see subsection 5.6).

Next we note that the ratio

meff(x0) =

{
1

2
( ∂0 + ∂∗0 ) fAP(x0) + cAa ∂∗0 ∂0 fPP(x0)

}

/ fPP(x0) (5.6)

converges to a constant mrs at large times x0, for any fixed value of the parameter cA,

because both fAP(x0) and fPP(x0) are proportional to e−MPSx0 in this limit. Moreover, in

the continuum limit, meff(x0) is expected to converge to the sum of the bare current-quark

masses of the r and the s quark, at all times x0, with a rate proportional to a in the

unimproved theory (where we set cA to zero) or a2 if the improvement coefficients csw and

cA are properly tuned [17, 28, 29].3

All our numerical data for meff(x0) in fact turned out to be statistically consistent

with a constant value, over a large range of x0, and the quark mass sum mrs was therefore

always unambiguously and accurately determined. In particular, the current-quark mass

msea = 1
2mrr of the sea quarks is obtained by setting the hopping parameters of the valence

quarks to κsea. Whether in general mrs coincides with 1
2 (mrr + mss), as one expects to be

the case if the lattice effects are small, is a question to which we shall return in section 6.

The bare pseudo-scalar decay constant FPS in the r̄s-channel is normally extracted

from the asymptotic behaviour of the two-point functions fAP(x0) and fPP(x0). In this

3The effects of the 1+O(am) renormalization factors (C.2) are expected to be small in practice and are

neglected here for simplicity.
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paper, however, we first computed mrs, MPS and GPS and then used the formula

FPS =
mrs

M2
PS

GPS (5.7)

for the decay constant. Starting from eq. (5.6), it is straightforward to show that equiv-

alent results are obtained in this way, up to small corrections of O(a2). Note that FPS is

automatically O(a)-improved if mrs is.

5.3 Spectral decomposition in finite volume

On a finite lattice with time-like extent T , the calculation of the pseudo-scalar and vector

meson masses requires some care and must address the issue of higher-states contributions.

This is, incidentally, not so in the case of the quark mass sum mrs, which is expected to

be independent of the lattice size up to lattice-spacing effects.

For 0 < x0 < T , the correlation function fPP(x0) (and similarly fVV(x0)) can be

expanded in a rapidly convergent series of the form

fPP(x0) = −
∞∑

i=0

∞∑

j=i

cijh(x0;Ei, Ej), (5.8)

h(t;E,E′) = exp{−Et − E′(T − t)} + exp{−E′t − E(T − t)}, (5.9)

where 0 = E0 < E1 < E2 < . . . are the intermediate-state energies and cij ≥ 0 the

associated spectral weights.4 In the channel considered here, the lowest intermediate state

is the r̄s pseudo-scalar meson state at zero spatial momentum. Then come the multi-meson

scattering states and more and more complicated states as one moves up the energy scale.

At large x0 and T , the dominant term in the series (5.8) is thus the one where Ei = 0

and Ej = MPS. Moreover, using the product inequality (B.3), the contributions of all

higher-energy states can be shown to be exponentially suppressed with respect to this

term. In practice their effects are seen in the simulation data only when either x0 or T −x0

is not too large. The leading terms in this range are then

fPP(x0) = c0h(x0; 0,M0) + c1h(x0; 0,M1) + . . . , M0 = MPS, (5.10)

where M1 denotes the energy of the next-to-lowest state in the r̄s-channel (if the spatial

volume of the lattice is large enough, this will be a three-meson state with all particles at

rest).

Note that each term in the spectral series (5.8) decreases exponentially in the range

0 ≤ x0 ¿ 1
2T , with an exponent equal to Ej − Ei that can be as small as the pseudo-

scalar meson mass, for example, even if both Ei and Ej are not small. The presence of

such contributions complicates the analysis of the correlation functions considerably unless

the time-like extent T of the lattice is sufficiently large to strongly suppress them. This

condition was barely satisfied in the case of the run A4, which is why we decided to discard

it from the physics analysis (as already mentioned in the first paper in this series).

4Equation (5.8) assumes the existence of a positive hermitian transfer matrix which may not be guar-

anteed in the improved theory. It seems likely to us, however, that a transfer matrix can still be defined,

as is the case in O(a2)-improved gauge theories [30], although complex energy values and negative weights

may occur at energies on the order of the cutoff scale 1/a.
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5.4 Effective masses and matrix elements

Slightly departing from what is usually done, we define the effective pseudo-scalar meson

mass Meff(x0) in the r̄s-channel to be the value of M ≥ 0 where

h(x0 − a; 0,M)

h(x0; 0,M)
=

fPP(x0 − a)

fPP(x0)
. (5.11)

Using the results obtained in appendix B, it is not difficult to prove that this equation

has one and only one solution. Moreover, with this definition of the effective mass it is

guaranteed that Meff(x0) = MPS at large x0, up to exponentially small terms. We then

also introduce the effective matrix element

Geff(x0) =

{

−Meff(x0)
fPP(x0)

h(x0; 0,Meff (x0))

}1/2

, (5.12)

which converges to GPS in the large-time limit.

The asymptotic behaviour of the effective mass at large x0 and T can be worked out

explicitly, starting from the spectral representation (5.10). Setting

ε(x0) =
c1h(x0; 0,M1)

c0h(x0; 0,M0)
, δ(x0) =

{

M
∂

∂M
lnh(x0; 0,M)

}

M=M0

, (5.13)

and going through a few lines of algebra, it is straightforward to derive the expansion

Meff(x0) = MPS

{

1 +
ε(x0) − ε(x0 − a)

δ(x0) − δ(x0 − a)
+ . . .

}

, (5.14)

where the ellipsis stands for terms that are exponentially small with respect to the next-

to-leading term. A similar formula,

Geff (x0) = GPS

{

1 +
1

2
ε(x0) +

1

2
(1 − δ(x0))

ε(x0) − ε(x0 − a)

δ(x0) − δ(x0 − a)
+ . . .

}

, (5.15)

is obtained in the case of the effective matrix element.

5.5 Fit procedures

From the point of view of the statistical error analysis, the correlation functions fPP, fAP

and fVV are the primary quantities, while the effective quark mass sums, meson masses

and matrix elements are functions of these. The statistical errors of all these quantities

tend to be strongly correlated. We took the correlations fully into account, from the

primary quantities to the final results, by propagating the errors using the jackknife method

(appendix A). In particular, fitted and interpolated values were always considered to be

functions of the input data, which allows their errors to be calculated in the standard

manner.

The quark mass sum, the pseudo-scalar meson masses and matrix elements, and the

masses of the vector mesons were all obtained by fitting the corresponding effective quantity

Peff (x0) in a range t0 ≤ x0 ≤ t1 of time with the chosen fit function Φ(x0). We performed
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Figure 5: Sample plots illustrating the dependence on x0/a of the effective quark mass sum (figure

a), the pseudo-scalar mass and matrix element (figures b and c) and the vector meson mass (figure

d), all given in lattice units. The data points shown are from run D4 and the valence quark masses

were both set to the sea-quark mass in this example. The solid lines are the fits discussed in the

text.

correlated least-squares fits, where the values of the fit parameters were determined by

minimizing

χ2 =

t1∑

x0,y0=t0

[Peff(x0) − Φ(x0)] (C
−1)x0y0

[Peff(y0) − Φ(y0)] , (5.16)

the matrix C being the statistical error covariance of Peff(t0), . . . , Peff (t1). The quark mass

sum mrs, for example, was computed by fitting meff(x0) to a constant as shown in figure 5a.

In the case of the pseudo-scalar meson masses, we fitted the data with the asymptotic

expression (5.14). We first calculated the mass Mπ of the pions, i.e. the mesons made of

the sea-quarks, by substituting M1 = 3Mπ for the energy of the next-higher state (thus

assuming the latter is a three-pion state with small interaction energy) and adjusting Mπ

and c1/c0 so as to minimize χ2. While the fit curves obtained in this way represent the

data very well, it should be noted that the fitted value of Mπ is largely determined by the

data at large times x0, where a fit to a constant would give nearly the same results (see

figure 5b).

Once Mπ was determined, the mesons made of a sea quark and a valence quark with

a mass different from the sea quark were considered. Here we set M1 = MPS + 2Mπ

and otherwise proceeded as in the degenerate case. Next the matrix elements GPS were

computed by fitting the data with the asymptotic expression (5.15), using the same values

– 15 –



J
H
E
P
0
2
(
2
0
0
7
)
0
8
2

of M1 as in the fits of the effective meson masses (figure 5c). We did not set c1/c0 to the

previously computed values, but it turned out that the two fits gave consistent results for

this parameter.

5.6 Energy spectrum in the vector channel

At small sea-quark masses, the vector mesons become resonances that decay into two

(or more) pseudo-scalar mesons. As was shown long ago [31], resonances give rise to a

characteristic volume-dependent pattern of the energy spectrum which allows their masses

and decay widths to be determined, in principle, from simulation data.

As before, we considered the channels where one or both of the r and s quarks is a

sea quark. Starting from the correlation functions fVV(x0), the lowest energy MV in this

channel was calculated by fitting the effective mass with the asymptotic formula (5.14)

(with MPS replaced by MV). For the lowest excited-state energy we substituted

M1 = (M2
PS + k2)1/2 + (M2

π + k2)1/2, k = 2π/L, (5.17)

in this case, L being the spatial size of the lattice. Excellent fits were obtained with this

ansatz and MV was determined quite accurately on all lattices.

We refer to the energy values MV as the vector meson masses in this paper, even in

those cases where the meson is likely to become a resonance in the infinite volume limit

(we estimate this to be so at the lightest quark masses in each series of lattices and perhaps

at some of the second-to-lightest as well). This use of language is only slightly incorrect,

however, because in all our simulations MV turned out to be at most 20% larger than

MPS + Mπ and significantly smaller than M1, in which case the true resonance energy is

expected to be close to MV [31].

We finally note that the statistical errors in the vector channel tend to be larger than

those in the pseudo-scalar channel. The effect could be related to the resonance character

of the vector mesons and it is conceivable that a coupled channel analysis, such as the one

recently presented by Aoki et al. [32], will not only allow the vector meson decays to be

studied but may also help to reduce the statistical errors.

6. Quark-mass dependence in partially quenched QCD

The most important physical results of our simulations were already presented in our first

paper in this series [9]. We now discuss the dependence of the quantities tabulated in

appendix C on the quark masses in some further detail, focusing on the empirical facts

rather than on their possible theoretical interpretation.

As before we set msea = 1
2mrr if the r quark is a sea quark and we now also set

mval = 1
2mss if the s quark is a valence quark. The figures in the tables are all for the

mixed case, where one quark is a sea quark and the other a valence quark. We are thus

considering partially quenched QCD with 2 + 1 flavours of quarks.
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Figure 6: Results for the ratio Rπ and the difference Rπ−RPS obtained on the D-series of lattices.

The solid lines represent the global linear fit (6.2). Note that the points in the lower plot do not

have to line up within errors, since Rπ −RPS is a function of two independent variables rather than

of msea − mval alone.

6.1 Quark and pseudo-scalar meson masses

We first remark that the quark mass sum mrs turns out to be equal to msea + mval within

statistical errors, on all lattices and for all quark-mass combinations. The ratio mrs/(msea+

mval) is obtained with better statistical precision than the quark masses, but the largest

deviation seen in this case is only 0.6%. The additivity of the current quark masses (which

is an exact property of the theory in the continuum limit) is thus accurately guaranteed

on the lattices that we have simulated.

Next we consider the ratios

RPS =
M2

PS

msea + mval
, Rπ = RPS|mval=msea

=
M2

π

2msea
, (6.1)

which are independent of the quark masses to lowest order of chiral perturbation theory.

However, this is not so at next-to-leading order and the numerically calculated ratios are

in fact weakly mass-dependent (see figure 6). An empirical fit

RPS = a0 + a1(msea + mval) + a2msea (6.2)
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Figure 7: Dependence of the bare pion decay constant Fπ = FPS|mval=msea
and of the difference

Fπ − FPS on the quark masses, as determined on the D-series of lattices. The solid lines represent

the global linear fit (6.3).

represents the data quite well in the given range of masses except perhaps for the points

where mval ¿ msea. In the case of the D-series of lattices, for example, the data for RPS

deviate from the fit by no more than 2% and most points are within a margin of 1%.

6.2 Pseudo-scalar decay constant and vector meson mass

As can be seen from the tables in appendix C, the calculated values of FPS/MV are nearly

independent of the quark masses. This comes a bit as a surprise, and could merely be

an accidental agreement in a limited range of masses, since there does not appear to be

any obvious physical connection between the pseudo-scalar decay constant and the vector

meson mass.

The mass dependence of these two quantities is thus practically the same and it suffices

to consider one of them. Focusing on the decay constant, a simple linear expression,

FPS = b0 + b1(msea + mval) + b2msea, (6.3)

turns out to fit the available data for FPS very well. On the D-series of lattices, for example,

the fit matches the data within statistical errors and the maximal relative deviation in the

given range of masses is only 1.6% (see figure 7).
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It is tempting to use these fits to extrapolate the decay constant to the chiral limit, but

as already emphasized in our previous paper [9], such extrapolations are difficult to justify

and asymptotically inconsistent with one-loop chiral perturbation theory. On the other

hand, the observed linearity of the pseudo-scalar decay constant in the range of masses

covered by the simulations is striking and calls for a theoretical explanation.

7. Concluding remarks

Numerical lattice QCD is currently in an interesting transition phase. The valence ap-

proximation is now practically overcome, but important physical effects of the light sea

quarks, such as the decay of the rho meson or the anomaly-driven mass splitting between

the eta and the pions, still have not or only barely been studied directly. Simulations at

smaller quark masses and on larger lattices than reported here will probably be required

for this. Our experience however suggests that the prospects for such simulations, using

O(a)-improved Wilson quarks, are now quite good.

So far the DD-HMC algorithm performed well and we did not run into any instabil-

ities or other technical difficulties. As one moves to smaller quark masses and smaller

lattice spacings, there may be some room for further algorithmic improvements, but the

development of variance-reduction methods is likely to be more rewarding at this point,

particularly so if disconnected quark-line diagrams and multi-particle amplitudes are to be

computed.

The numerical simulations were performed on PC clusters at CERN, the Centro Enrico

Fermi, the Institut für Theoretische Physik der Universität Bern (with a contribution from

the Schweizerischer Nationalfonds) and on a CRAY XT3 at the Swiss National Super-

computing Centre (CSCS). We are grateful to all these institutions for the continuous

support given to this project.

A. Statistical error analysis

In the physics analysis of the runs A1 − A3, B1 − B4 and D1 − D5, we kept track of

the statistical errors using the jackknife method. In particular, any correlations among the

errors of different observables were always properly taken into account. Here we summarize

our conventions and briefly explain the basic procedures that we used.

A.1 Jackknife samples

Let Ar, r = 1, . . . , R, be a set of primary stochastic observables and ar,1, . . . , ar,N a sequence

of N measured values of these. In lattice QCD the most common primary observables

are the Wilson loops and sums of products of quark propagators. The jackknife method

assumes that the measured values are unbiased and statistically independent. We shall

thus take it for granted that the residual autocorrelations are negligible in the cases of

interest (see section 4).
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The averages ār of the observables Ar and the associated statistical error covariance

Crs are given by

ār =
1

N

N∑

i=1

ar,i, (A.1)

Crs =
1

N(N − 1)

N∑

i=1

(ar,i − ār) (as,i − ās) . (A.2)

If we introduce the jackknife samples

aJ
r,i = ār + cN (ār − ar,i) , cN = (N(N − 1))−1/2 , (A.3)

an equivalent expression for the error matrix is

Crs =
N∑

i=1

(
aJ

r,i − ār

) (
aJ

s,i − ās

)
. (A.4)

Note that our definition of the jackknife samples slightly departs from the standard con-

ventions, where cN = 1/(N − 1). The modification is numerically insignificant in practice,

but leads to some simplifications when data from different simulations are to be combined

(see subsection A.3).

A.2 Error propagation

Apart from estimating the primary observables, one may be interested in evaluating various

functions f(A1, . . . , AR) of them, which may involve fit procedures and other complicated

operations. The standard stochastic estimate of such an observable is

f̄ = f(ā1, . . . , āR) (A.5)

and the associated series of jackknife estimates is defined by

fJ
i = f(āJ

1,i, . . . , ā
J
R,i), i = 1, . . . , N. (A.6)

A little algebra then shows that the expression

σ2 =
N∑

i=1

(
fJ

i − f̄
)2

(A.7)

provides an estimate of the statistical variance of f̄ , which coincides with the usual error

propagation formula (the one that involves the gradient of f) up to terms of order 1/N .

Similarly the error covariance of f and any other function g is obtained by summing

(fJ
i − f̄)(gJ

i − ḡ) over the jackknife samples.

In practice the error formula (A.7) proves to be very convenient. If an observable is a

function of previously calculated observables, for example, one can take advantage of the

fact that the composition of functions is associative, i.e. the jackknife series fJ
i is simply

obtained by inserting the jackknife series of the arguments, independently of whether these

are primary or not. The data analysis can thus proceed in steps, starting from the primary

observables and progressing to more and more complicated observables.

– 20 –



J
H
E
P
0
2
(
2
0
0
7
)
0
8
2

A.3 Combining data from different runs

Simulations of lattice QCD at different sea-quark masses, lattice spacings, etc., can be

assumed to be statistically independent. The statistical variance of any observable that

depends on data from several simulations is therefore the sum of the associated partial

variances. This rule can easily be accommodated in the jackknife analysis by embedding

the jackknife series of the observables in extended series that include all simulations on

which the observable depends.

The method is best explained by considering two simulations, where N1 measurements

of some observables Ar are made in the first and N2 measurements of some other observables

Bs in the second. The associated jackknife series aJ
r,1, . . . , a

J
r,N1

and bJ
s,1, . . . , b

J
s,N2

are then

computed as before, starting from the primary observables in each simulation. Next they

are embedded in extended series

aJ
r,1, . . . , a

J
r,N1

, ār, . . . , ār
︸ ︷︷ ︸

N2 elements

and b̄s, . . . , b̄s
︸ ︷︷ ︸

N1 elements

bJ
s,1, . . . , b

J
s,N2

(A.8)

of length N1 +N2 such that the first N1 elements are occupied by the jackknife series from

the first simulation and the last N2 elements by those from the second simulation.

With this assignment, and if the extended series are treated as ordinary jackknife

series, the correct error correlation matrix of the full set A1, . . . , AR, B1, . . . , BS of ob-

servables is obtained. Moreover, we may define the jackknife series of any observable

f(A1, . . . AR, B1, . . . , BS) in the standard manner and compute its variance using eq. (A.7).

The embedding trick thus allows the statistical errors to be propagated as if there were a

single simulation.

B. Properties of the auxiliary function h(t; E, E ′)

The symmetry properties

h(t;E,E′) = h(T − t;E,E′) = h(t;E′, E) (B.1)

are an immediate consequence of the definition (5.9) of the function h(t;E,E′). It is also

straightforward to verify that

h(t;E,E′) = 2e−
1
2
(E+E′)T cosh

(
1

2
(E′ − E)(T − 2t)

)

, (B.2)

and h(t;E,E′) is thus a convex function of t which attains its minimum at t = 1
2T .

B.1 Product inequality

We now show that the inequality

h(t;E,E′ + E′′) ≤ h(t;E,E′)h(t; 0, E′′) (B.3)

holds for all values of the arguments t, E, E′ and E′′. To this end, first note that

cosh(α + β) ≤ cosh(α + β) + cosh(α − β) = 2 cosh α cosh β. (B.4)
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Run κr κs amrs aMPS a2GPS aMV

A1 0.15750 0.15750 0.0548(5) 0.2726(19) 0.0881(12) 0.389(4)

0.15800 0.0472(6) 0.2536(19) 0.0859(12) 0.379(5)

0.15825 0.0434(6) 0.2438(20) 0.0848(13) 0.373(5)

0.15835 0.0419(6) 0.2398(21) 0.0844(13) 0.371(5)

A2 0.15800 0.15750 0.0359(3) 0.2137(18) 0.0703(12) 0.344(3)

0.15800 0.0285(3) 0.1913(19) 0.0682(13) 0.334(4)

0.15825 0.0249(3) 0.1790(21) 0.0671(14) 0.329(5)

0.15835 0.0235(3) 0.1738(22) 0.0666(15) 0.328(5)

A3 0.15825 0.15750 0.0281(4) 0.185(3) 0.0617(19) 0.327(5)

0.15800 0.0208(4) 0.160(3) 0.0599(22) 0.317(7)

0.15825 0.0172(4) 0.147(4) 0.0593(23) 0.312(8)

0.15835 0.0158(4) 0.141(4) 0.0592(24) 0.311(9)

Table 5: Results for mrs, MPS, GPS and MV (lattices A1 − A3)

Run κr κs aM2
PS/mrs aFPS FPS/MV

A1 0.15750 0.15750 1.357(17) 0.0650(7) 0.1669(21)

0.15800 1.363(19) 0.0630(7) 0.1664(24)

0.15825 1.369(21) 0.0619(8) 0.166(3)

0.15835 1.372(22) 0.0615(8) 0.166(3)

A2 0.15800 0.15750 1.272(20) 0.0553(7) 0.161(3)

0.15800 1.282(25) 0.0532(7) 0.159(3)

0.15825 1.29(3) 0.0522(8) 0.159(3)

0.15835 1.29(3) 0.0518(8) 0.158(4)

A3 0.15825 0.15750 1.22(4) 0.0505(8) 0.154(3)

0.15800 1.23(5) 0.0486(10) 0.153(4)

0.15825 1.25(6) 0.0474(11) 0.152(5)

0.15835 1.26(7) 0.0469(12) 0.151(6)

Table 6: Combinations of mrs, MPS, GPS and MV (lattices A1 − A3)

Substituting α = 1
2(E′ − E)(T − 2t) and β = 1

2E′′(T − 2t), this inequality becomes

cosh

(
1

2
(E′ + E′′ − E)(T − 2t)

)

≤ 2 cosh

(
1

2
(E′ − E)(T − 2t)

)

cosh

(
1

2
E′′(T − 2t)

)

,

(B.5)

which is easily seen to coincide with (B.3) after inserting the representation (B.2).

B.2 Monotonicity property

If t and s are in the range s < t ≤ 1
2T , and if M > 0, it follows from eq. (B.2) that the

ratio

r =
h(s; 0,M)

h(t; 0,M)
(B.6)

is greater than 1. A less obvious statement is that the ratio increases monotonically from

r = 1 to r = ∞ when M goes from zero to infinity.

In order to show this, we insert eq. (B.2) and work out the quotient

q =
r − 1

r + 1
= tanh

(
1

2
M(t − s)

)

tanh

(
1

2
M(T − t − s)

)

. (B.7)
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Run κr κs amrs aMPS a2GPS aMV

B1 0.15410 0.15410 0.03889(18) 0.1958(9) 0.0453(5) 0.2896(17)

0.15425 0.03631(18) 0.1892(9) 0.0447(5) 0.2858(17)

0.15440 0.03375(18) 0.1824(10) 0.0441(6) 0.2820(18)

0.15455 0.03120(18) 0.1754(10) 0.0435(6) 0.2782(19)

B2 0.15440 0.15410 0.02696(13) 0.1619(11) 0.0384(7) 0.2518(21)

0.15425 0.02440(14) 0.1546(12) 0.0379(7) 0.2475(22)

0.15440 0.02187(14) 0.1470(12) 0.0374(7) 0.2432(24)

0.15455 0.01935(14) 0.1391(13) 0.0370(8) 0.239(3)

B3 0.15455 0.15410 0.02185(12) 0.1416(12) 0.0333(7) 0.2418(24)

0.15425 0.01927(12) 0.1329(13) 0.0326(7) 0.238(3)

0.15440 0.01668(12) 0.1235(14) 0.0318(7) 0.233(3)

0.15455 0.01409(13) 0.1132(15) 0.0310(8) 0.230(3)

B4 0.15462 0.15410 0.02029(16) 0.1328(10) 0.0317(6) 0.237(3)

0.15425 0.01774(16) 0.1242(11) 0.0312(6) 0.233(3)

0.15440 0.01521(17) 0.1151(12) 0.0307(6) 0.229(3)

0.15455 0.01269(17) 0.1055(14) 0.0302(7) 0.224(4)

0.15462 0.01151(17) 0.1008(15) 0.0300(8) 0.223(4)

Table 7: Results for mrs, MPS, GPS and MV (lattices B1 − B4)

Run κr κs aM2
PS/mrs aFPS FPS/MV

B1 0.15410 0.15410 0.986(7) 0.0460(4) 0.1587(17)

0.15425 0.986(8) 0.0453(4) 0.1586(18)

0.15440 0.986(8) 0.0447(4) 0.1585(19)

0.15455 0.986(9) 0.0441(5) 0.1584(20)

B2 0.15440 0.15410 0.973(14) 0.0395(4) 0.1567(19)

0.15425 0.979(15) 0.0387(4) 0.1562(20)

0.15440 0.988(17) 0.0379(4) 0.1556(21)

0.15455 1.000(19) 0.0370(4) 0.1549(23)

B3 0.15455 0.15410 0.918(15) 0.0363(3) 0.1502(21)

0.15425 0.916(17) 0.0356(4) 0.1497(23)

0.15440 0.914(19) 0.0348(4) 0.149(3)

0.15455 0.910(22) 0.0340(4) 0.148(3)

B4 0.15462 0.15410 0.869(13) 0.0365(4) 0.154(3)

0.15425 0.869(15) 0.0359(4) 0.154(3)

0.15440 0.871(18) 0.0352(5) 0.154(3)

0.15455 0.878(23) 0.0344(5) 0.153(4)

0.15462 0.88(3) 0.0340(6) 0.153(4)

Table 8: Combinations of mrs, MPS, GPS and MV (lattices B1 − B4)

In the specified range of t and s, the arguments of the hyperbolic functions in this equation

are non-negative and monotonically growing with M . The quotient thus rises monotonically

from 0 to 1 when M goes from zero to infinity, which proves our claim, since r and q are

monotonically related to each other.

C. Tables of meson masses and decay constants

The simulation results tabulated in this appendix were obtained following the lines of

section 5. In all cases, the r quark was taken to be a sea quark, i.e. the associated hopping
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Run κr κs amrs aMPS a2GPS aMV

D1 0.13550 0.13550 0.06771(21) 0.3286(10) 0.1069(15) 0.464(3)

0.13590 0.05704(22) 0.3017(10) 0.1030(15) 0.447(3)

0.13610 0.05165(23) 0.2873(11) 0.1008(15) 0.438(3)

0.13620 0.04893(24) 0.2799(12) 0.0998(15) 0.434(4)

D2 0.13590 0.13550 0.04968(13) 0.2758(8) 0.0920(11) 0.4173(24)

0.13590 0.03914(14) 0.2461(9) 0.0891(11) 0.401(3)

0.13610 0.03383(14) 0.2301(9) 0.0880(12) 0.394(4)

0.13620 0.03112(15) 0.2218(10) 0.0878(13) 0.390(4)

D3 0.13610 0.13550 0.04092(14) 0.2440(10) 0.0811(12) 0.382(3)

0.13590 0.03041(14) 0.2110(11) 0.0780(13) 0.363(4)

0.13610 0.02514(15) 0.1929(12) 0.0766(14) 0.354(5)

0.13620 0.02249(15) 0.1832(13) 0.0760(15) 0.349(5)

D4 0.13620 0.13550 0.03728(14) 0.2335(11) 0.0813(11) 0.374(4)

0.13590 0.02686(15) 0.1993(12) 0.0785(12) 0.356(4)

0.13610 0.02168(15) 0.1800(13) 0.0771(13) 0.348(5)

0.13620 0.01909(15) 0.1695(14) 0.0765(13) 0.345(6)

D5 0.13625 0.13550 0.03474(13) 0.2249(11) 0.0784(13) 0.376(5)

0.13590 0.02428(13) 0.1881(11) 0.0747(14) 0.359(6)

0.13610 0.01910(13) 0.1672(13) 0.0729(15) 0.350(7)

0.13620 0.01651(14) 0.1559(14) 0.0722(16) 0.346(8)

0.13625 0.01522(14) 0.1499(15) 0.0719(17) 0.344(9)

Table 9: Results for mrs, MPS, GPS and MV (lattices D1 − D5)

Run κr κs aM2
PS/mrs aFPS FPS/MV

D1 0.13550 0.13550 1.594(9) 0.0671(9) 0.1445(20)

0.13590 1.596(10) 0.0645(9) 0.1444(21)

0.13610 1.598(11) 0.0631(9) 0.1440(23)

0.13620 1.601(12) 0.0624(9) 0.1438(23)

D2 0.13590 0.13550 1.531(9) 0.0601(6) 0.1441(17)

0.13590 1.547(10) 0.0576(7) 0.1435(20)

0.13610 1.565(12) 0.0562(7) 0.1428(22)

0.13620 1.581(14) 0.0556(7) 0.1424(24)

D3 0.13610 0.13550 1.454(11) 0.0558(6) 0.1461(20)

0.13590 1.465(14) 0.0533(7) 0.1467(23)

0.13610 1.480(17) 0.0518(7) 0.146(3)

0.13620 1.492(19) 0.0510(8) 0.146(3)

D4 0.13620 0.13550 1.462(13) 0.0556(6) 0.1487(22)

0.13590 1.478(17) 0.0531(7) 0.149(3)

0.13610 1.494(20) 0.0516(7) 0.148(3)

0.13620 1.505(23) 0.0508(7) 0.147(3)

D5 0.13625 0.13550 1.456(15) 0.0539(8) 0.143(3)

0.13590 1.457(19) 0.0512(8) 0.143(3)

0.13610 1.464(24) 0.0498(8) 0.142(3)

0.13620 1.47(3) 0.0490(9) 0.142(4)

0.13625 1.48(3) 0.0487(9) 0.142(4)

Table 10: Combinations of mrs, MPS, GPS and MV (lattices D1 − D5)

parameter κr was set to κsea. The hopping parameter κs of the other quark, on the other

hand, ranged over 4 or 5 values, one of which being κsea.
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For each series of runs, we quote the quark mass sums mrs, the pseudo-scalar meson

masses MPS and matrix elements GPS, and the vector meson masses MV, all given in lattice

units (tables 5, 7 and 9). Some combinations of these quantities are printed in tables 6, 8

and 10. The errors given in brackets are statistical only.

If so desired, the quoted results can be converted to physical units by substituting

the estimates 0.0717(15), 0.0521(7) and 0.0784(10) fm for the spacings of the A, B and D

lattices [9]. The quark mass sums mrs, the matrix elements GPS and the decay constants

FPS then also need to be renormalized,

mrs → ZAZ−1
P mrs, GPS → ZPGPS, FPS → ZAFPS, (C.1)

where ZA and ZP denote the (mass-independent) renormalization constants of the non-

singlet axial current and density. Moreover, in order to guarantee the O(a) improvement

of these quantities in the improved theory, the renormalization constants must be modified

according to

ZX → ZX(1 + b̄Xamsea +
1

2
b̃Xamrs), (C.2)

with properly adjusted coefficients b̄X and b̃X [17, 33] (the figures quoted in tables 9 and

10 include the contribution of the operator improvement term proportional to cA but not

the 1 + O(am) renormalization factors).
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